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The paper presents mathematical underpinnings of the locally linear embedding

technique for data dimensionality reduction. It is shown that a cogent framework for
describing the method is that of optimisation on a Grassmann manifold. The solution
delivered by the algorithm is characterised as a constrained minimiser for a problem
in which the cost function and all the constraints are defined on such a manifold. The
role of the internal gauge symmetry in solving the underlying optimisation problem is
illuminated.
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1. Introduction

High-dimensional data can often be converted to low-dimensional data with little

or no fundamental loss of information. A simple and widely used method for

dimensionality reduction is principal component analysis (PCA). The method

represents data points by their respective orthogonal projections on a subspace

of low dimension spanned by the directions (also called components, features,

factors or sources) of greatest variance in the data set. The locally linear

embedding (LLE)12 and ISOMAP16 algorithms are two recently proposed non-

linear generalisations of PCA. Originally developed for visualisation purposes, these

two methods project (embed) high-dimensional data into a two- or low-dimensional

subspace by extracting meaningful components in a non-linear fashion. For a brief

but informative overview of a class of dimensionality reduction methods that

includes PCA, LLE and ISOMAP, see Ref. 14.

This paper focuses on the all-important LLE scheme, the utility of which can

hardly be overestimated. Alongside earlier applications in visualisation4,12,13 and

classification,17 the scheme has most recently found use to such tasks as 3D-object

pose estimation,20 face membership authentication,11 multipose face synthesis,18

facial animation,10 image denoising,15 hyperspectral image processing,8 digital

watermarking,6 feature extraction,7 gait recognition,9 and manifold learning19 — to

name a few. In most applications, LLE is invoked as a ready-to-use dimensionality
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reduction tool. In contrast, this article touches upon some theoretical issues

regarding the foundational basis of the algorithm.

The paper gives a detailed account of the mathematical underpinnings of LLE.

It is shown that LLE solves a constrained optimisation problem that is usefully

viewed as a problem posed on a certain non-Euclidean space, namely, a Grassmann

manifold. Such a manifold is the collection of all linear subspaces of fixed dimension

in some ambient linear space. Optimisation on manifolds related to the orthogonal

group such as Stiefel and Grassmann manifolds frequently appear in the context

of neural networks, signal processing, pattern recognition, and computer vision.5

The benefit of the Grassmann manifold-based formulation of LLE’s optimisation

problem is in allowing one to see more clearly an internal symmetry, or gauge

freedom, related to the arbitrariness of the choice of co-ordinates in which to

naturally state the problem. This paper demonstrates that once recognised, the

gauge freedom can be used advantageously to isolate a solution of the optimisation

problem. The present exposition of LLE can be seen as an expansion of the

presentations given in Refs. 2 and 13.

The paper is arranged as follows. The next section sketches the main ideas

behind the working of LLE. The following section presents auxiliary material needed

to formulate LLE’s optimisation problem. The subsequent section describes the

structure of the optimisation problem and a path to its solution. It is here that the

main contribution of this note resides, this being an illumination of the role played

by the gauge degrees of freedom in isolating the solution. Following concluding

remarks, two appendices provide some matrix calculations, which — with a view

to self-reliance — are performed in a detailed, explicit manner.

2. Main Ideas

The locally linear embedding algorithm assumes that a high-dimensional data

set lies on, or near to, a smooth low-dimensional manifold. Small patches of

the manifold, each containing a fraction of the data set, can be equipped with

individual local co-ordinates. The high-dimensional co-ordinates of each patch

can be mapped into corresponding local co-ordinates by means of an essentially

linear transformation. LLE attempts to find a global transformation of the

high-dimensional co-ordinates into low-dimensional ones by exploiting adjacency

information about closely located data points, this information being a form of

summarisation of the local transformations between the high- and low-dimensional

co-ordinates.

Suppose that the data set comprises vectors x1, . . . ,xN ∈ R
D. In the first step,

for each 1 ≤ i ≤ N , nearest neighbours of xi are identified by using a preselected

criterion for close proximity and further indexed by a set N (i) ⊂ {1, . . . , N}. In

the second step, weights {wij}j∈N (i) are found that optimally reconstruct xi from
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its nearest neighbours. These weights minimise the local reconstruction error

E
(i)
loc({wij}j∈N (i)) =

∥

∥xi −
∑

j∈N (i)

wijxj

∥

∥

2
,

with ‖ · ‖ the Euclidean norm, subject to the condition
∑

j∈N (i)

wij = 1. (1)

A key property of the optimal weights is that they are invariant to three types of

transformation:

(1) Scaling. Multiplying all co-ordinates by a scalar factor scales the errors E
(i)
loc

uniformly and hence yields the same weights.

(2) Orthogonal transformation. Distances are invariant to rotation and mirror

reflection and so too is each E
(i)
loc.

(3) Translation. The weights are constrained to sum to one, so an offset to all

co-ordinates does not affect the value of any E
(i)
loc.

Suppose that the data points are sampled densely from the underlying low-

dimensional manifold. Then, for each point xi, there exists a linear map composed

of a translation, rotation and scaling, that maps the high-dimensional co-ordinates

of a close neighbourhood of xi to corresponding local co-ordinates on the manifold.

Since the weights computed in the high-dimensional space are invariant to the

three constituent mappings, it is natural to take these weights as a basis for the

reconstruction of the local co-ordinates. In fact, all local neighbourhoods can be

reconstructed simultaneously if a specific optimisation problem is solved. The cost

function for this problem measures how well low-dimensional co-ordinates of any

given point yi ∈ R
d are reconstructed from the neighbouring points {yj}j∈N (i)

using the weights computed in the previous step; here d is a dimension index fixed

beforehand, usually at a value much smaller than D. More specifically, in the third

step, LLE minimises the reconstruction error

Elle(y1, . . . ,yN ) =

N
∑

i=1

‖yi −
∑

j∈N (i)

wijyj‖
2.

This optimisation is similar to that in the first step, except that now the weights

are fixed and the low-dimensional co-ordinates are sought. To obtain an essentially

unique solution, the yi are constrained to have zero mean and an identity covariance

matrix.

3. Computing the Adjacency Matrix

It is convenient to put all candidate weights into a single N × N adjacency matrix

W = [wij ]1≤i,j≤N . For each 1 ≤ i ≤ N , let wT

i = [wi1, . . . , wiN ] denote the ith

row of W. Its transpose, wi, is by definition a sparse column vector whose essential
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entries are labelled by the members of the indexing set N (i). More precisely, if

N(i) is the cardinality of N (i) and {n1, . . . , nN(i)} is the increasing enumeration

of N (i), then wi is determined by the sub-vector

w̃i = [win1
, . . . , winN(i)

]T,

with all the entries of wi not entering w̃i being set equal to zero; this latter property

can of course be expressed by the condition

wij = 0 for j /∈ N (i). (2)

It is obvious that the optimal W is the composite of the individually computed

optimal rows. Determining the optimal wi, for each 1 ≤ i ≤ N , is equivalent to

determining the optimal w̃i.

Given 1 ≤ i ≤ N , define a N × N(i) matrix X̃i by

X̃i = [xn1
− xi, . . . ,xnN(i)

− xi].

In view of (1),

X̃iw̃i =

N(i)
∑

k=1

(xnk
− xi)wink

=
∑

j∈N (i)

xjwij −
[

∑

j∈N (i)

wij

]

xi

=
∑

j∈N (i)

xjwij − xi,

so that

E
(i)
loc(w̃i) = ‖X̃iw̃i‖

2.

Finding the optimal w̃i that minimises the error E
(i)
loc subject to (1) reduces to

finding a critical point of the Lagrange function

Li =
1

2
‖X̃iw̃i‖

2 − λi

[

∑

j∈N (i)

wij − 1
]

,

where λi is a scalar Lagrange multiplier. The latter task, in turn, requires the

computation of the derivative δLi/δw̃i of Li with respect to w̃i. For each m =

1, 2, . . . , denote by 1m the length-m vector of all ones. It turns out that δLi/δw̃i

can be represented as the length-N(i) vector given by

δLi

δw̃i
= X̃T

i X̃iw̃i − λi1N(i)

(see Appendix A). Here X̃T

i X̃i has the meaning of the local covariance matrix

associated with xi and will henceforth be denoted by C̃i. The optimal weight w̃i

satisfies the system comprising the equation δLi/δw̃i = 0 and condition (1), that

is,

C̃iw̃i − λi1N(i) = 0 and 1T

N(i)w̃i = 1.
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The first of these equations implies that w̃i = λiC̃
−1
i 1N(i), and this equality coupled

with the second equation of the above system yields λi1
T

N(i)C̃
−1
i 1N(i) = 1 and

further λi = (1T

N(i)C̃
−1
i 1N(i))

−1. Hence, finally,

w̃i = (1T

N(i)C̃
−1
i 1N(i))

−1C̃−1
i 1N(i).

4. Searching for the Optimal Embedding

An embedding of the data set x1, . . . ,xN into the Euclidean space of dimension d is

a mapping which assigns to each xi a vector yi in R
d. The embedding vectors can

be compactly represented by the d × N matrix Y = [y1, . . . ,yN ]. The embedding

matrix sought by LLE minimises the function

Elle(Y) =

N
∑

i=1

∥

∥yi −

N
∑

j=1

wijyj

∥

∥

2

subject to the conditions:

N
∑

i=1

yi = 0, (3)

N−1
N

∑

i=1

yiy
T

i = Id, (4)

where Id denotes the d × d unit matrix. The imposing of constraints (3) and

(4) guarantees the essential uniqueness of the solution (up to an orthogonal

transformation of the embedding space; see below). The first condition removes

the translational degree of freedom related to the fact that Elle is unaltered when

each yi is replaced by yi + t, where t is a length-d vector. The second condition

ensures that reconstruction errors for different co-ordinates in the embedding are

measured on the same scale.

4.1. Equivalent formulation

Noting that
∑N

j=1 wijyj is the ith column of YWT for each 1 ≤ i ≤ N and that

‖Y − YWT‖2
F

=

N
∑

i=1

∥

∥yi −

N
∑

j=1

wijyj

∥

∥

2
,

with ‖ · ‖F the Frobenius norm, leads to

Elle(Y) = ‖Y − YWT‖2
F

(5)

as an equivalent expression for the embedding cost function. Conditions (3) and (4)

can equivalently be formulated as

Y1N = 0, (6)

N−1YYT = Id. (7)
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It follows from (5) that the value of Elle does not change if Y is replaced by UY,

where U is a member of the set O(d) of all real orthogonal d× d matrices, which is

a group under matrix multiplication. Likewise constraints (6) and (7) are invariant

to premultiplication by a matrix U in O(d), as Y1N = 0 implies UY1N = 0 and

N−1YYT = Id implies N−1UYYTUT = UIdU
T = UUT = Id. Thus the solution

to the problem of the constrained minimisation of Elle is determined only up to

a left factor in the form of a d × d orthogonal matrix. The search space for this

problem is effectively the set of all equivalence classes of d × N matrices, with two

matrices belonging to the same class if one can be obtained from the other by

premultiplication by a d× d orthogonal matrix. It turns out that this search space

can be usefully reduced, with the resulting smaller search space naturally identified

as an appropriate Grassmann manifold.

Indeed, consider the “tall and skinny” matrix YT instead of the “short and

fat” matrix Y. Then condition (7) becomes the requirement that N−1/2YT should

belong to the (N, d)-Stiefel manifold St(N, d). By definition, the (N, d)-Stiefel

manifold is the set of all N × d orthogonal matrices

St(N, d) = {X ∈ R
N×d | XTX = Id}

(see Refs. 1 and 3). Note that when d = 1, this set is the (N − 1)-dimensional unit

sphere. The original problem of minimising Elle on R
d×N subject to (6) and (7)

can be cast as minimising Elle on St(N, d) subject to (6) as a single constraint. The

solution of this new problem is still ambiguous: if N−1/2YT represents a particular

solution, then each matrix of the form N−1/2YTU, where U ∈ O(d), represents an

essentially equivalent solution. The set of all such equivalent solutions

[N−1/2YT] = {N−1/2YTU | U ∈ O(d)},

termed the O(d)-orbit of N−1/2YT, determines a single member of the (N, d)-

Grassmann manifold Gr(N, d). By definition, this latter manifold is the quotient

space of the (N, d)-Stiefel manifold obtained by declaring X,Y ∈ St(N, d) to be

equivalent if there exists a d × d orthogonal matrix U such that Y = XU. Now,

Elle induces a cost function on Gr(N, d)

Ẽlle([X]) = Elle(X) (X ∈ St(N, d))

and likewise (6) induces a constraint on Gr(N, d) simultaneously satisfied or not

satisfied by all elements of any given O(d)-orbit. With these induced objects in

place, the corresponding constrained minimiser for Ẽlle can be viewed as an entity

from which the ambiguity related to the O(d)-invariance property of the initial

optimisation problem is “quotiented out”.

As a set of points, the (N, d)-Grassmann manifold can be identified with the

set of all d-dimensional linear subspaces of R
N . Under this identification, any

particular X ∈ St(N, d) represents an orthonormal basis for the d-dimensional

subspace in Gr(N, d) spanned by the columns of X, and any d × d orthogonal U

corresponds to a change-of-basis transformation, namely, the one that takes the
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orthonormal basis represented by X to the new orthonormal basis, for the same

subspace, represented by XU. When d = 1, the (N, d)-Grassmann manifold reduces

to the (N − 1)-dimensional projective space. The (N, d)-Grassmann manifold can

be equipped with a natural topology under which it becomes a compact space.

The compactness property of Gr(N, d) guarantees the existence of a solution of the

constrained optimisation problem for Ẽlle, and hence a (non-univocal) solution of

the original constrained optimisation problem for Elle.

4.2. Computing the optimal embedding

To isolate the optimal embedding matrix Y (to within O(d)-equivalence), introduce

the Lagrange function

L =
1

2

N
∑

i=1

∥

∥yi −

N
∑

j=1

yjwij

∥

∥

2
−

1

2

d
∑

α,β=1

λαβ

[ 1

N

N
∑

i=1

yαiyβi − δαβ

]

−

d
∑

α=1

κα

[ 1

N

N
∑

i=1

yαi

]

,

where yi = [y1i, . . . , ydi]
T, the λαβ satisfying λαβ = λβα form one group of scalar

Lagrange multipliers, the κα form another group of scalar Lagrange multipliers, and

the δαβ are components of the Kronecker delta, with δαβ = 0 if α 6= β and δαβ = 1

if α = β. On letting Λ = [λαβ ]1≤α,β≤d ∈ R
d×d and κ = [κ1, . . . , κd]

T ∈ R
d×1, this

function can be written as

L =
1

2
‖Y − YWT‖2

F
−

1

2
tr

(

Λ
[ 1

N
YYT − Id

])

−
1

N
1T

NYκ,

where tr denotes trace. With the derivative δL /δY of L with respect to Y

represented by the d × N matrix as per

δL

δY
= Y(IN − WT)(IN − W) − N−1ΛY − κ1T

N

(see Appendix B), the optimal Y satisfies

Y(IN − WT)(IN − W) − N−1ΛY − κ1T

N = 0 (8)

together with the feasibility conditions (6) and (7). In the overall system comprising

(6)–(8), the second equation reduces the search space to the (N, d)-Stiefel manifold,

and the remaining equations furnish constraints on this manifold. The solution of

the system is to be determined to within O(d)-equivalence.

Equation (8) can be simplified as follows. First, by postmultiplying (8) by 1N ,

Y(IN − WT)(IN − W)1N − N−1ΛY1N − κ1T

N1N = 0. (9)

Next, by conditions (1) and (2) relating to all indices 1 ≤ i ≤ N ,

(IN − W)1N = 0. (10)
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The last equality implies that the first term of (9) is null. In view of (6), the second

term of (9) is also null. As a result, the third term of (9) has to vanish, and, given

that 1T

N1N = N, it follows that κ = 0. Thus (8) reduces to

Y(IN − WT)(IN − W) = N−1ΛY,

or, equivalently, by taking the transpose of both sides of the equation, to

(IN − WT)(IN − W)YT = N−1YTΛ. (11)

At this point, it is critical to note that, with Λ and Y treated as dependent

unknowns, the above equation has a special symmetry — it is invariant to an

action of O(d). Specifically, if a pair (Λ,Y) satisfies (11), then so too does the pair

(Λ̃, Ỹ) = (UTΛU,UTY) for any U ∈ O(d). Any particular selection of U defines

a gauge, the passage from (Λ,Y) to (Λ̃, Ỹ) for some U is an instance of a gauge

transformation, and the existence of equivalent representations of (Λ,Y) as (Λ̃, Ỹ)

corresponds to the gauge freedom. The gauge freedom in (11) is a direct reflection

of the fact that a “true” search space for the optimisation problem under study is

not the Stiefel manifold St(N, d) but rather the Grassmann manifold Gr(N, d).

The symmetry of (11) can now be exploited by a gauge fixing that consists in

a choice of a particularly convenient gauge. Suppose (Λ,Y) is a specific solution

to the system consisting of (6), (7) and (11). Let Λ = UDUT be the eigenvalue

decomposition of Λ, with U a d × d orthogonal matrix and D = diag(d1, . . . , dd).

Rearrange the diagonal entries of D in increasing order by using an appropriate

d × d permutation matrixa P as follows

PTDP = D′ = diag(d′1, . . . , d
′
d) with d′1 ≤ · · · ≤ d′d.

Note that P, as any other permutation matrix, is orthogonal, and so too is the

composite matrix UP. Adopting the gauge associated with UP leads to the gauge

transformation (Λ̃, Ỹ) = (D′,PTUTY). Under this transformation (11) becomes

(IN − WT)(IN − W)ỸT = N−1ỸTD′.

The last equation shows that the columns of ỸT (or, equivalently, the rows of Ỹ)

are eigenvectors of (IN − WT)(IN − W). More specifically, if vi is the ith column

vector of ỸT, then

(IN − WT)(IN − W)vi = λivi, λi = N−1d′i.

Given that N−1ỸỸT = Id, each vi has norm N1/2. Thus the columns of N−1/2Ỹ

(that is, the N−1/2vi) are normalised eigenvectors of (IN − WT)(IN − W). It

now remains to find out precisely which of all the normalised eigenvectors of

(IN − WT)(IN − W) are those forming the columns of N−1/2Ỹ.

aA permutation matrix is a square matrix whose entries are all 0’s and 1’s, with exactly one 1
in each row and exactly one 1 in each column. Premultiplying an n × n matrix A by an n × n

permutation matrix results in a rearrangement of the rows of A. Postmultiplying an n×n matrix

A by an n× n permutation matrix results in a rearrangement of the columns of A.
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It follows from (5) that

Elle(Ỹ) = tr(Ỹ(IN − WT)(IN − W)ỸT)

and from (7) and (11) that

Ỹ(IN − WT)(IN − W)ỸT = D′.

Hence

Elle(Ỹ) = trD′ = N

d
∑

i=1

λi. (12)

Because (IN −WT)(IN −W) is positive semi-definite, each λi is non-negative. Now,

by (10), 1N is an eigenvector of (IN − WT)(IN − W) with zero eigenvalue. Since

(6) can be rewritten as 1T

NYT = 0T, it follows that

1T

NỸT = 1T

NYTUP = 0T,

showing that 1N is orthogonal to each vi. Generically, 1N is the only (up to scale)

eigenvector of (IN −WT)(IN −W) with zero eigenvalue, so each λi can be assumed

positive. Since, again generically, the λi are also all distinct, it further follows

that each N−1/2vi can be assumed to be uniquely specified (to within the sign

ambiguity) by λi. Now, in view of (12), the N−1/2vi are characterised as those

normalised eigenvectors of (IN − WT)(IN − W) for which
∑d

i=1 λi attains the

smallest possible value. But, as the λi all differ, the smallest value of
∑d

i=1 λi is

attained precisely when λi is the ith smallest positive eigenvalue of (IN −WT)(IN −

W) for each 1 ≤ i ≤ d. Because the smallest eigenvalue of (IN −WT)(IN −W) is

zero, the ith smallest positive eigenvalue of (IN −WT)(IN −W) coincides with the

(i + 1)th smallest eigenvalue of (IN − WT)(IN − W). Consequently, the optimal

solution expressed in terms of Ỹ is characterised by the requirement that, for each

1 ≤ i ≤ d, the ith column vector of N−1/2ỸT be a normalised eigenvector of

(IN − WT)(IN − W) corresponding to the (i + 1)th smallest eigenvalue, with any

of the two candidate eigenvectors considered as equally valid if they differ merely

by a sign. The embedding matrix Ỹ satisfying this condition is precisely what LLE

takes as an output. It is well worth stressing that Ỹ is a particular solution differing

from the starting Y by a left factor embodied by a d × d orthogonal matrix. All

equivalent solutions take the form UỸ with U varying over O(d).

5. Concluding Remarks

The optimisation problem solved by the LLE algorithm has been presented as one

posed on a Grassmann manifold. The advantage of this formulation is at least

twofold. First, it helps reveal the internal degrees of freedom present in the natural,

co-ordinate-specific formulation of the problem that initially involves a Euclidean

space and upon refinement operates with a Stiefel manifold. Second, with the

gauge freedom properly recognised, it facilitates an adequate choice of a co-ordinate

system for reducing the equation for a critical point of the Lagrange function, in

terms of which the problem is expressed, to an easily solvable eigenvalue problem.
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Appendix A. Calculation of the Derivative of Li

For a scalar function f(w̃) with a vector argument w̃, the derivative of f can be

defined as the unique (column) vector δf/δw̃ of the same length as w̃, satisfying

f(w̃ + δw̃) = f(w̃) +
( δf

δw̃

)T

δw̃ + o(‖δw̃‖)

= f(w̃) + tr
( δf

δw̃
δw̃T

)

+ o(‖δw̃‖),

where o(ǫ) stands for a term that approaches zero faster than ǫ as ǫ → 0.

To obtain an explicit expression for δLi/δw̃i, we first calculate the derivative

of the function

g(w̃) =
1

2
‖X̃w̃‖2.

We shall use elementary matrix-calculation rules such as: (i) tr(α) = α if α is scalar;

(ii) tr(A) = tr(AT); and (iii) tr(AB) = tr(BA). Note that

‖X̃w̃‖2 = tr(X̃w̃w̃TX̃T)

and

‖X̃(w̃ + δw̃)‖2 = tr(X̃w̃w̃TX̃T) + tr(X̃δw̃ w̃TX̃T)

+ tr(X̃w̃ δw̃TX̃T) + tr(X̃δw̃ δw̃TX̃T).

Now

tr(X̃δw̃ w̃TX̃T) = tr(δw̃ w̃TX̃TX̃) = tr(X̃TX̃w̃ δw̃T)

and

tr(X̃w̃ δw̃TX̃T) = tr(X̃TX̃w̃ δw̃T).

Hence

g(w̃ + δw̃) − g(w̃) = tr(X̃TX̃w̃ δw̃T) + O(‖δw̃‖2),

where O(ǫ) denotes a term that is bounded by a constant factor of ǫ near 0, leading

to

δg

δw̃
= X̃TX̃w̃. (A.1)

We now calculate the derivative of the function

ϕ(w̃) =

m
∑

n=1

wn − 1 = 1T

mw̃ − 1
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with w̃ = [w1, . . . , wm]T. In view of 1T

mw̃ = tr(1mw̃T), we have

ϕ(w̃ + δw̃) − ϕ(w̃) = tr(1m δw̃T)

whence, immediately,

δϕ

δw̃
= 1m. (A.2)

Applying (A.1) and (A.2) to the respective terms of Li finally gives

δLi

δw̃i
= X̃T

i X̃iw̃i − λi1N(i).

Appendix B. Calculation of the Derivative of L

For a scalar function f = f(Y) with a matrix argument Y, the derivative of f can

be defined as the unique matrix δf/δY of the same size as Y, satisfying

f(Y + δY) = f(Y) + tr
( δf

δY
δYT

)

+ o(‖δY‖F ).

To calculate δL /δY, first set S = IN − WT and let

f1(W) =
1

2
‖Y − YWT‖2

F
=

1

2
‖YS‖2

F
.

Combining ‖YS‖2
F

= tr(YSSTYT) and

‖(Y + δY)S‖2
F

= tr(YSSTYT) + tr(δYSSTYT)

+ tr(YSSTδYT) + tr(δYSSTδYT)

with tr(δYSSTYT) = tr(YSSTδYT) yields

f1(Y + δY)) − f1(Y) = tr(YSSTδYT) + O(‖δY‖2
F
),

whence

δf1

δY
= YSST = Y(IN − WT)(IN − W).

Define

f2(Y) =
1

2
tr

(

Λ
[ 1

N
YYT − Id

])

.

Since

tr(Λ(Y + δY)(Y + δY)T) = tr(ΛYYT) + tr(ΛδYYT)

+ tr(ΛYδYT) + tr(ΛδYδYT)

and

tr(ΛδYYT) = tr(δYYTΛ) = tr(ΛTYδYT) = tr(ΛYδYT),

where the last equality uses the fact that Λ is symmetric, it follows that

f2(Y + δY)) − f2(Y) =
1

N
tr(ΛYδYT) + O(‖δY‖2

F
),
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and hence that

δf2

δY
=

1

N
ΛY.

Now let

f3(Y) = 1T

NYκ.

From the identities

1T

NYκ = tr(1T

NYκ) = tr(κ1T

NY)

it follows that

f3(Y + δY) − f3(Y) = tr(κ1T

NδY),

whence

δf3

δY
= κ1T

N .

Thus, finally,

δL

δY
=

δf1

δY
−

δf2

δY
−

δf3

δY

= Y(IN − WT)(IN − W) − N−1ΛY − κ1T

N .
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